A Nonlinear Optical Coherence Tomography System for Biomolecular Detection and Intervention Stephen A. Boppart, Beckman Inst. For Advanced Science & Technology #### Biomolecular Systems Research Program ### **Objective** Figure 1. Plot illustrating the "biological window" in tissue for near-infrared wavelengths. Between 750 nm and 1300 nm, optical attenuation is dominated by scattering. The wavelength range for optical sources, including titanium; smobirer (Ti:Al.O.) is shown. Figure 2. Schematic of low-coherence interferometry. The use of a short coherence length light source enables localization of the backreflection from the sample. The coherence length (dz) defines the axial OCT imaging resolution. ## **Description** We propose the development of a new instrument that we call the Biomolecular Laser Imaging and Therapeutic System (BLITS). BLITS combines and extends several imaging technologies, including Optical Coherence Tomography (OCT), OCT spectroscopic, imaging, and Coherent Anti-Stokes Raman Scattering (CARS) spectroscopy, to Produce a versatile system capable of noninvasively measuring Micron-scale structure and molecular composition of tissues. BLITS is based on OCT, an imaging sensor that measures micron-Scale tissue structure *in vivo*. ## **Innovative Claims/NASA Significance** The Biomolecular Laser Imaging and Therapeutic System (BLITS) will provide an innovative, integrated platform offering diagnostic flexibility, on-line treatment capability, and real-time monitoring. Unlike other noninvasive imaging modalities, such as ultrasound or magnetic resonance imaging, OCT provides micron-scale resolution of cellular and sub-cellular structural features at real-time acquisition rates. Unlike the ionizing radiation used in x-ray computed tomography and PETBPECT, tissues are imaged with low-power near-infrared radiation which poses little to no health risk. Unlike laser-scanning confocal and multi-photon microscopy, no exogenous agents are required to provide image contrast. Using semiconductor and solid-state laser oscillators, the apparatus can be extremely compact, reliable, and turn-key. The combination of CARS and OCT in BLITS adds molecular and spatial discrimination capabilities not found elsewhere. ### **Plans** | Year/Quarter | Y1 Q1 | Y1 Q2 | Y1 Q3 | Y1 Q4 | |--------------|---|---|---|--| | AIM 1 | (1.1) Construct
high bandwidth
sources | | (1.3) Demonstrate
high-resolution
OCT | | | AIM2 | | (2.1) Construct
tissue phantoms | | (2.1) Demonstrate
SOCT with tissue
phantoms | | AIM 3 | | | | | | Year/Quarter | Y2 Q1 | Y2 Q2 | Y2 Q3 | Y2 Q4 | | AIM 1 | (1.2) Construction
of regen/OCT
system | | | (1.3) Demonstrate
regen/OCT
imaging and tissue
ablation | | AIM2 | | | | | | AIM 3 | (3.1) Demonstrate
CARS OCT tissue
phantoms | (3.1) Build pulse
shaper for CARS
OCT | | | | Year/Quarter | Y3 Q1 | Y3 Q2 | Y3 Q3 | Y3 Q4 | | AIM 1 | | , | , | | | AIM2 | | (2.2) Prepare
hamster carcinoma
model | (2.2)
Spectroscopic
imaging of
hamster model | (2.2) Analyze
spectra for
correlative
signatures of
oncogenesis | | AIM 3 | (3.1) Demonstrate
CARS OCT on
tissue phantoms | | (3.2) CARS OCT
imaging of
hamster model | (3.2) Analyze
molecular species
density for
correlative
signatures of
oncogenesis |